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DETERMINATION OF STRESS INTENSITY FACTORS FOR CRACKS OF COMPLEX 

SHAPE IN ANISOTROPIC PLATES 

V. N. Maksimenko and A. V. Tsendrovskii UDC 539.3:629.7.015.4:624.07 

The application of analytical methods to the problem of fatigue crack propagation 
and branching is complicated by the shortage of information on the stress distribu- 
tion near the tip of cracks of complex configuration. A discussion of this problem 
and a survey of the studies in this area can be found in [i], for example. Below 
we develop a method of solving a problem concerning a system of cracks of complex 
form in an anisotropic half-plane. An efficient algorithm for numerical solution 
of the problem is proposed. A study is made of the effect of anisotropy of the ma- 
terial, the free edge of the plate, and the curvature of the crack on the stress 
intensity factors at the tips of the cracks. 

I. We will examine an elastic plate made of a homogeneous anisotropic material occupy- 
ing the region D = {x > 0}. The plate is weakened by smooth, curved, non-intersecting in- 
ternal notches L7 (j = i ..... k), and is subjected to a system of external forces. We will assume 
that the edges of the notches are free of loads and are not in contact with one another. 

The stresses in the plate are expressed through two analytic functions [2]: 

(:=, T~v, :v) 2 Re (~t,2,, - -  ~, ,  1 )r  ( z~) ,  z~ = x + ~ V  (v = t,  2), ( i .  1 ) 

where ~ are the roots of the characteristic equation. 

We seek the unknown functions Sv(z~) in the form 

"I 

r (z~) = r  (z~) + r  (z~), ( i .  2 )  

Henceforth, we use the notation in [3]; r is the solution for the half-plane without 
notches from the prescribed system of external forces. The values of r will be assumed 
to be known. The functions r v) were given in another form in [4]. 

The functions r determined by Eqs. (1.2) satisfy the prescribed system of external 
forces, including the boundary conditions on the edge of the plate x = 0 and at infinity. 

Inserting the limiting values of r from (1.2) into the boundary conditions for L 
and parameterizing the contours L i = {t --~J(~); I~I<i}, we obtain the following system of 
singular integral equations of the problem [3] to determine the unknown complex functions 
~ ( t )  = {~w(t) l t  ~ Lj ;  ] = 1 . . . . .  k} :  

I h 1 
F~ (~, ~) z~ (,1) d~ 

--I a ~ l  --I 

{~s (~, ~) X, (~l) + k~ ~ (~, ~l) Xs (q)} d~l---- ]j(~),, 
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(,,,j (t) = z~ (~), 

e2J (t) = - -  a (t) r (t) - -  b t )  r (t), 

�9 ~l(ll)" d (ln ( ' ~ 1 - - t 1 ) ( ~ - - n t l t l ) ( T l - - ~ t 2 )  - -  a ~  (zl--s--~t--2)(Z2--mlt--1) i --6Js " 1 

r 

n) , (1.3) 

h (~) = - ~  {a'~ O~ (tl) + b(t)(l)[(tl) + r176 (t2)}, 

�9 01 - -  ~) I~', j 0]) 
F~ (L ~) = ,~{ (~) _ 5 ' 

ao = ~h - ~ ,  bo ~'I - ~ ,  t =~ (~) ~ L~, ~ = ~" (~I) ~ L,, 
~L2 - -  ~t2 ~t2 - -  ~ 2  

where  63s i s  t h e  K r o n e c k e r  s y m b o l ;  1: = d ~ / d q .  

Equations (1.3), together with auxiliary conditions for the nonambiguity of the dis- 
placements in circumventing Lj [3] 

i 

Xj (~) ~ 01) d~l = 0 (i = 1 . . . . .  k) ( 1 . 4 )  
--1 

c o m p l e t e l y  d e t e r m i n e  t h e  s o u g h t  s o l u t i o n  o f  t h e  p r o b l e m .  

L e t  t h e  p l a t e  be weakened  by a s i n g l e  r e c t i l i n e a r  n o t c h  L = {t----~(~) = x0 + le C~ ~; I~1 < t}  
(0 <~ = < 2~). Assuming X(~) = i~(~)/e (e -- ~.l -- P2) and changing to an isotropic medium (e + 0), 
we obtain an integral equation in the problem of a rectilinear notch in an isotropic half- 
plane 

1 1 

--1 --1 

t d 
~ (g, n) = -g N m (c ~ + r ~) - -  2X (C + ~r)-* {2W (C + ~T) cos r + 

+ (~l --  g) Csin~ ~P + T2 sin ~ + 2iT [(+l + g) sin ~ - -  YI sin *}t ( 1 .5  ) 

/4 e-ir 2x~ 
k2 (~, ~l) = - ( ~ - i " ~ ,  C --- - 7 - - -  (+l + ~) sin ~p, 

T = (~l - -  ~) sin ~, X ----"-7- z~ - -  ~l sin Ct Y = "7"% --  ~ sin ~;, r  (z --  -~. 

This result agrees with the relations found in [i], for example. 

2. Since the smooth internal notches Lj are non-intersecting, the kernels k~S(~, q) in 
Eqs. (1.3) are continuous. The index of the system of singular integral equations (1.3) is 
equal to +i. The solution of the system, with auxiliary conditions (1.4) in the class of 
functions 

XJ (~) = X  ~ (~) ( i  ~2)-7~/2 ( 2 . 1 )  

[X~(~) are bounded functions which are continuous in accordance with HSlder' s condition] 
exists and is unique [5]. 

Normally we reduce the solution of system (1.3), together with auxiliary conditions 
(1.4), to the solution of a system of linear algebraic equations 

"s 0 "s --0 

n ~ l  t ~ -  Xp $~1  

N 

- -  X~,~ = 0, / = i ,  k ,  t~ N - - i s  ( 2 . 2 )  N -. ""~ P= "'" 

�9 ~ 2n - -  t 
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for approximate values of the sought functions at Chebyshev nodes XJ~ = x~(tn). An evaluation 
of the convergence of the solution of system (2.2) on the solutions of Eqs. (1.3) and (1.4) 
was given in [6], for example. 

Having determined the following values from (2.2) and (1.3) 

~ i  ( •  l) = l im ~ [~ (~)] (t - -  ~)~12 
~ 1 1  

and using asymptotic formulas in the neighborhood c = ~J(• of the ends of the notch Lj [3] 

Cv (z~) ~ 2-'a%% (-f- t). {:F ~ ( +  l)/(z~ --  ~ , , . ,  

we can use Eqs. (i.I) to then find the asymptotic stress distribution at the crack tips. 

In the case where the end ap of the notch Lp is at the edge of the plate x = 0 or in 
the event of the intersection of notches at the point ap, condition (1.4) is no lonser satis- 
fied at j = p and should be discarded. Fixed singularities appear in the kernels k~P(g, N) 
of integral equations (1.3), while the function mlp(t) will have a singularity at the point 
t = ap which differs from the root singularity. Its character is determined from integral 
equations of the problem (1.3) by the method in [7]. The numerical method of solution (2.2) 
is not valid in this case. 

Below we use the simplified method of solution in [i] for boundary and branching cracks. 
As before, we seek the unknown functions Xp(g) in the form (2.1), but instead of condition 

�9 . . 0 

(1.4) at j = p we impose the condltlon Xp(-l) = [ap = <P(-I) - the branching point or the 0 
point at which the notch Lp reaches the edge of the plate]. This simplified method of solu- 
tion is effective only when it is not necessary to determine the stress distribution in the 
neighborhood of the inflection point ap = ~P(-I). If it is necessary to study the stress 
distribution near the tip ap, then we need to seek the solution in a form which properly re- 
flects the singularity at the inflection point and to use more complicated formulas of inte- 
gration. 

3. Representations (1.2) and the algorithm for numerical solution of integral equations 
(1.3) prove to be an effective means of determining stresses in the neighborhood of the tips 
of notches of complex form in anisotropic and isotropic plates. 

Presented below are results of calculations which are important in fracture mechanics 
in regard to the stress intensity factors for normal and shear stresses at the tip of a curved 
crack or a branching crack with straight branches in a half-plane: 

- ~/~-- 
K1 = ] im~ V ~ ,  K2 = lim~n ~. 

Here, ~ is a certain nominal dimension; r = It - c!; c is the tip of the crack; t is a point 
lying on a tangent to the crack drawn through the tip c. 

Calculations were performed for plates of isotropic and anisotropic materials with dif- 
ferent degrees of anisotropy: a) E = 27.61-104 MPa, v = 0.25; b) E I = 5.384"10 ~ MPa, E 2 = 
1.795"104 MPa, Gl2 = 0.863"10 ~ MPa, ~ = 0.25; c) E I = 27.61"104 MPa, E 2 = 2.761"10 ~ MPa, 
G~2 = 1.035"104 MPa, vi = 0.25. The data for the isotropic material was obtained by taking 
the limit in the anisotropy parameters in the numerical solution. 

Figures 1-4 show results of the calculations of K~ and K 2 for the uniform tension of a 
half-plane by the forces o~ = i: curves i are for the isotropic material (case "a"), while 
curves 2 and 3 are for the orthotropic material (cases "b" and "c"); the change in the stress 
intensity factors is represented by solid (dashed) lines where the angle ~, formed by the 
principal anisotropy direction E I with the x axis is equal to 0 (~/2). 

Figures i and 2 give values of K i (i = I, 2) for the left and right tips of a crack moving 
over a semicircular arc near the edge of the half-plane at Rh = 0.7 and s = R/2. The results 
obtained here for the isotropic material coincide with the data in [8]. Lines i pass between 
the curves for the orthotropic material at ~ = 0 and ~/2. The effect of anisotropy on the 
stress intensity factor may either decrease or increase, depending on the position of the 
crack relative to the edges of the half-plane and the loading axis. Anisotropy has the 
greatest effect at extreme values of K i. 

Figure 3 shows results of calculation of K I in relation to the angle a for an edge notch 
in the half-plane over an arc. Here, a is the length of the arc, ~ = a/2. The results of 
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TABLE i 

t0 20 I 60 
I 

4 0.7493 0:7549 I 

N 

30 40 I 50 

0.7549 [ 

t o.8,= 
I 

t 0  0~82~3 0~8190 0 ~ 8 ' ~  I 

'6 0.8885 0.8782 [ 0.8769 0.8768 I 0:8768 

28 0.9977. 0.9828 I 0:9771 0.9765 I 0 , 9 7 6 5 .  0.9765 

the calculations for the isotropic material agree with the data in [9]. The value of K t 
decreases with an increase in the degree of anisotropy. At a + 0, we obtain values of K I 
at the tip of a straight edge notch L= {0~x~a; y = 0}, which agree with the results in 
[I0]. For the isotropic material at a + 0, K ! = 1.121 for as many as 20 co-location points 
on the notch (N = 20), i.e., the relative error of the solution is no greater than 0.1% [I]. 
As for straight notches [i0], the values of K1(a) (0 < ~ < ~/2) at �9 = 0 and ~/2 coincide. 

Figure 4 shows the value of K I at the tips A and B of a branching crack (a main notch 
of length 2s I normal to the plate edge dividing into two lateral notches of length 2s 2 at 
angles ~ = ~/6) near the edge of a half-plane with s163 = 0.5, ~ = s The values of K l 
are plotted as a function of 6 = h/s At ~ + = (the case of a branching crack in an infinite 
plate), the results of the calculations for an isotropic material coincide with well-known 
results in [i]. The divergence of K z at �9 = 0 and ~[2 increases with an increase in aniso- 
tropy, while the values of K I for the isotropic material occupy an intermediate position. 
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The calculated results demonstrated the good convergence of the algorithm. For compari- 
son, Table 1 shows values of K I at ~ = 0 and different values of ~ = R/h and N [see (2.2)] 
for the problem shown in Fig. i. The convergence of the numerical solution deteriorates with 
the approach of the ends of the notch to the edge of the half-plane (e + ~). For the problem 
shown in Fig. 3, the results of calculations of K I at N > 20 do not change in the first three 
significant digits. 

4 

For a cross-shaped crack L= U Ls [four notches L s = {t----exp (i~s/2)l(~ ~ I); I$I < |) joined 

at the tips at angles ~ = ~/2] in an infinite isotropic plate subjected to the load o~ = o~ = 
i, we have K~ = 0.86414. The investigations [ii, 12] obtained K I = 0.86414 and 0.86356, re- 
spectively, for this problem. All of the data presented is for i0 co-location points on each 
branch L s (s = i, 4). 
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